full_stack_developer_and_ai_researcher
....:::::::::::::::::::::::::::::::... .: :. .´ `. : : :_ _: :iiii\ /iiii: .:IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:. .:´ | \||||||||||||||||III/'''' ''''\III||||||||||||||||/ | `:. :|= ( `(||||||||||III/` .:´´``:. `\III||||||||||)´ ) =|: ':. |:. `'''''''''''´´.·` `·. ``'''''''''''` .:| .:' .:` '''''''| ` ········ ` ` ········ ` |'''''' `:. .: ''''''''' | ,,,, | ''''''''' :. : '''''''''' \' .////|IIIIIIII|\\\\. '/ ''''''''''' : `.'''''''''' \ .///''''' '''''\\\. / ''''''''' .´ `.'''''''''' \ '''''' . ;;; . '''''' / ''''''''''.´ `·. \ .: {||||||} :. / .´ `. .\ ...´ : [||||||||] : `... /. .´ : (´ O | _|'''''|_ | O `) : `. `'''''''' ´ :´ `: `'''''''''´ .´ `·........... ·´ `· .............´
_____ _ / ____| | | | (___ ___ _ ____ _____ _ __| | ___ ___ ___ ___ \___ \ / _ \ '__\ \ / / _ \ '__| |/ _ \/ __/ __/ __| ____) | __/ | \ V / __/ | | | __/\__ \__ \__ \ |_____/ \___|_| \_/ \___|_| |_|\___||___/___/___/
AUTHORS | Zijun Li, Linsong Guo, Jiagan Cheng, Quan Chen, et al. |
PUBLISHED | December 2021 |
URL | arxiv.org/abs/2112.12921 |
This comprehensive survey explores serverless computing as the most promising architecture for deploying microservices in cloud-native environments. The paper deconstructs serverless architecture into four stack layers: Virtualization, Encapsule, System Orchestration, and System Coordination.
The authors analyze the current limitations and challenges in serverless computing and provide valuable insights for backend developers looking to leverage this architecture for scalable and flexible cloud services. The technical primer is particularly useful for understanding design trade-offs in modern distributed systems.
_/ _// _// _/ // _// _// _// _// _/ _// _// _// _// _// _///_// _// _// _// _// _// _// _// _// _// _/ _/ _////// _// _// _// _// _//_// _// _// _// _// _// _// _// _// _// _// _// _// _// _// _/ _// _// _//_// _//// _// _// _/// _///_// _//
URL | ai.coach |
TECHNOLOGIES | react.js (typescript), openai-api, tailwind, node.js |
AI Coach is a personal AI coaching platform that helps users improve their skills through personalized feedback and targeted exercises. The system uses natural language processing to analyze user inputs and provide tailored guidance.
Users can create accounts, track their progress, and receive AI-generated improvement plans specific to their goals. The platform currently focuses on public speaking, writing, and leadership skills development.
________ ___ ________ ________ ___ __ ________ ___ __ ________ ________ |\ __ \|\ \ |\ __ \|\ ____\|\ \|\ \ |\ ____\|\ \ |\ \|\ __ \|\ ___ \ \ \ \|\ /\ \ \ \ \ \|\ \ \ \___|\ \ \/ /|_ \ \ \___|\ \ \ \ \ \ \ \|\ \ \ \\ \ \ \ \ __ \ \ \ \ \ __ \ \ \ \ \ ___ \ \ \_____ \ \ \ __\ \ \ \ __ \ \ \\ \ \ \ \ \|\ \ \ \____\ \ \ \ \ \ \____\ \ \\ \ \ \|____|\ \ \ \|\__\_\ \ \ \ \ \ \ \\ \ \ \ \_______\ \_______\ \__\ \__\ \_______\ \__\\ \__\ ____\_\ \ \____________\ \__\ \__\ \__\\ \__\ \|_______|\|_______|\|__|\|__|\|_______|\|__| \|__| |\_________\|____________|\|__|\|__|\|__| \|__| \|_________|
URL | tail-risk-strategy.portfolio-model |
TECHNOLOGIES | python, next.js, tensorflow, mongodb, vue.js, postgresql |
Portfolio Modeling is a financial tool that enables investors to simulate and analyze investment portfolios under various market conditions. The platform will provide users with sophisticated risk assessment features.
Users will be able to import existing portfolios, test different asset allocations, and visualize projected performance over time. The system will incorporate historical market data and modern portfolio theory to deliver actionable insights.
█████╗ ██████╗ ██╗ ██╗ █████╗ ██╗ ██╔══██╗██╔══██╗╚██╗██╔╝ ██╔══██╗██║ ███████║██████╔╝ ╚███╔╝ ███████║██║ ██╔══██║██╔══██╗ ██╔██╗ ██╔══██║██║ ██║ ██║██║ ██║██╔╝ ██╗██╗██║ ██║██║ ╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝╚═╝╚═╝ ╚═╝╚═╝
URL | arx.ai.research |
TECHNOLOGIES | HTML, CSS, JS, AWS, |
Arx Industries AI is a non-profit AI Research & Development initiative focused on developing accessible AI tools for educational and humanitarian purposes. The platform's goal is to offer AI solutions that can be deployed in resource-constrained environments.
The project includes machine learning models for medical image analysis, language learning applications, and environmental monitoring tools. All technologies are developed with a focus on low computational requirements and offline functionality.
/james_keller/stack ├── backend │ ├── languages & frameworks │ │ ├── javascript / typescript │ │ │ ├── node.js │ │ │ └── express │ │ ├── python │ │ │ └── django / flask │ │ └── php │ │ └── laravel │ └── databases │ ├── mysql │ ├── postgresql │ └── mongodb ├── frontend │ ├── languages & libraries │ │ ├── javascript / typescript │ │ │ ├── react.js │ │ │ ├── vue.js │ │ │ └── vanilla js │ │ ├── html / css │ │ └── sass / tailwindcss │ └── tools │ ├── webpack │ ├── vite │ └── npm / yarn └── deployment & tools ├── git / github ├── docker ├── aws / vercel └── ci/cd pipelines